Tool Integration in AgenticGoKit β
Overview β
Integrating tools with agents is a key capability in AgenticGoKit that enables agents to perform actions beyond text generation. This tutorial covers how to connect tools to agents, configure tool access, handle tool results, and implement tool-aware prompting.
Effective tool integration allows agents to interact with external systems, access specialized information, and perform complex tasks while maintaining a natural conversation flow.
Prerequisites β
- Understanding of MCP Overview
- Familiarity with Tool Development
- Knowledge of Agent Lifecycle
- Basic understanding of State Management
MCP Integration Architecture β
βββββββββββββββ βββββββββββββββββ βββββββββββββββ
β β β β β β
β Agent ββββββΆβ MCP Manager ββββββΆβ Tool β
β β β β β β
βββββββββββββββ βββββββββββββββββ βββββββββββββββ
β² β β
β βΌ βΌ
β βββββββββββββββββ βββββββββββββββ
ββββββββββββββββ Tool Result ββββββ External β
β Processor β β Service β
βββββββββββββββββ βββββββββββββββ
Basic Tool Integration β
1. Setting Up MCP Manager β
go
package main
import (
"context"
"fmt"
"log"
"os"
"time"
"github.com/kunalkushwaha/agenticgokit/core"
"github.com/kunalkushwaha/agenticgokit/tools"
)
func main() {
// Create MCP manager
mcpManager := core.NewMCPManager()
// Register tools
mcpManager.RegisterTool("calculator", tools.NewCalculatorTool())
mcpManager.RegisterTool("weather", tools.NewWeatherTool(os.Getenv("WEATHER_API_KEY")))
mcpManager.RegisterTool("counter", tools.NewCounterTool())
// Create LLM provider
llmProvider, err := core.NewOpenAIProvider(
os.Getenv("OPENAI_API_KEY"),
"gpt-4",
core.WithTemperature(0.2),
core.WithMaxTokens(1000),
)
if err != nil {
log.Fatalf("Failed to create LLM provider: %v", err)
}
// Create agent with MCP capability
agent, err := core.NewAgent("assistant").
WithLLM(llmProvider).
WithMCP(mcpManager).
WithMCPConfig(core.MCPConfig{
Tools: []string{"calculator", "weather", "counter"},
MaxToolCalls: 5,
ToolTimeout: 10 * time.Second,
}).
Build()
if err != nil {
log.Fatalf("Failed to create agent: %v", err)
}
// Create runner
runner := core.NewRunner(100)
runner.RegisterAgent("assistant", agent)
// Start runner
ctx := context.Background()
runner.Start(ctx)
defer runner.Stop()
// Create event with user query
event := core.NewEvent(
"assistant",
core.EventData{"message": "What's 25 * 16 and what's the weather in New York?"},
map[string]string{"session_id": "test-session"},
)
// Register callback to handle agent response
runner.RegisterCallback(core.HookAfterAgentRun, "response-handler",
func(ctx context.Context, args core.CallbackArgs) (core.State, error) {
if response, ok := args.AgentResult.OutputState.Get("response"); ok {
fmt.Printf("Agent response: %s\n", response)
}
return args.State, nil
},
)
// Emit event
runner.Emit(event)
// Wait for response
time.Sleep(5 * time.Second)
}
2. Tool-Aware Prompting β
go
func createToolAwareAgent() (core.AgentHandler, error) {
// Create MCP manager
mcpManager := core.NewMCPManager()
// Register tools
mcpManager.RegisterTool("calculator", tools.NewCalculatorTool())
mcpManager.RegisterTool("weather", tools.NewWeatherTool(os.Getenv("WEATHER_API_KEY")))
// Create LLM provider
llmProvider, err := core.NewOpenAIProvider(
os.Getenv("OPENAI_API_KEY"),
"gpt-4",
core.WithTemperature(0.2),
core.WithMaxTokens(1000),
)
if err != nil {
return nil, fmt.Errorf("failed to create LLM provider: %w", err)
}
// Create tool-aware system prompt
systemPrompt := `You are a helpful assistant with access to the following tools:
1. calculator: Performs basic arithmetic operations (add, subtract, multiply, divide)
- Parameters: operation (string), a (number), b (number)
2. weather: Gets current weather information for a specified location
- Parameters: location (string), units (string, optional)
When you need to use a tool, use the following format:
<tool>calculator</tool>
<parameters>
{
"operation": "add",
"a": 5,
"b": 3
}
</parameters>
Wait for the tool result before continuing. Tool results will be provided in this format:
<tool_result>
{
"result": 8
}
</tool_result>
Answer user questions directly when you can, and use tools when necessary.`
// Create agent with MCP capability and tool-aware prompt
return core.NewAgent("assistant").
WithLLM(llmProvider).
WithSystemPrompt(systemPrompt).
WithMCP(mcpManager).
WithMCPConfig(core.MCPConfig{
Tools: []string{"calculator", "weather"},
MaxToolCalls: 5,
ToolTimeout: 10 * time.Second,
}).
Build()
}
3. Handling Tool Results β
go
func setupToolResultHandling(runner *core.Runner) {
// Register callback for tool execution
runner.RegisterCallback(core.HookBeforeToolExecution, "tool-execution-logger",
func(ctx context.Context, args core.CallbackArgs) (core.State, error) {
toolName := args.ToolName
toolParams := args.ToolParams
fmt.Printf("Executing tool: %s with params: %v\n", toolName, toolParams)
return args.State, nil
},
)
// Register callback for tool result
runner.RegisterCallback(core.HookAfterToolExecution, "tool-result-logger",
func(ctx context.Context, args core.CallbackArgs) (core.State, error) {
toolName := args.ToolName
toolResult := args.ToolResult
toolError := args.Error
if toolError != nil {
fmt.Printf("Tool %s failed: %v\n", toolName, toolError)
} else {
fmt.Printf("Tool %s result: %v\n", toolName, toolResult)
}
return args.State, nil
},
)
// Register callback for tool error
runner.RegisterCallback(core.HookToolError, "tool-error-handler",
func(ctx context.Context, args core.CallbackArgs) (core.State, error) {
toolName := args.ToolName
toolError := args.Error
fmt.Printf("Tool error: %s - %v\n", toolName, toolError)
// Add error information to state
newState := args.State.Clone()
newState.Set("tool_error", fmt.Sprintf("The %s tool encountered an error: %v", toolName, toolError))
return newState, nil
},
)
}
Advanced Tool Integration β
1. Dynamic Tool Selection β
go
type DynamicToolSelector struct {
tools map[string]core.Tool
llmProvider core.LLMProvider
}
func NewDynamicToolSelector(llmProvider core.LLMProvider) *DynamicToolSelector {
return &DynamicToolSelector{
tools: make(map[string]core.Tool),
llmProvider: llmProvider,
}
}
func (dts *DynamicToolSelector) RegisterTool(name string, tool core.Tool) {
dts.tools[name] = tool
}
func (dts *DynamicToolSelector) SelectTools(ctx context.Context, query string) ([]string, error) {
// Create tool descriptions
var toolDescriptions strings.Builder
for name, tool := range dts.tools {
toolDescriptions.WriteString(fmt.Sprintf("- %s: %s\n", name, tool.Description()))
}
// Create prompt for tool selection
prompt := fmt.Sprintf(`Given the following user query and available tools, select the most appropriate tools to answer the query.
User query: %s
Available tools:
%s
Return only the names of the tools that should be used, separated by commas (e.g., "calculator,weather").
If no tools are needed, return "none".
Selected tools:`, query, toolDescriptions.String())
// Get tool selection from LLM
response, err := dts.llmProvider.Generate(ctx, prompt)
if err != nil {
return nil, fmt.Errorf("tool selection failed: %w", err)
}
// Parse response
response = strings.TrimSpace(response)
if response == "none" {
return []string{}, nil
}
// Split by comma and trim spaces
selectedTools := strings.Split(response, ",")
for i := range selectedTools {
selectedTools[i] = strings.TrimSpace(selectedTools[i])
}
// Validate selected tools
validTools := make([]string, 0, len(selectedTools))
for _, name := range selectedTools {
if _, exists := dts.tools[name]; exists {
validTools = append(validTools, name)
}
}
return validTools, nil
}
2. Tool Result Processing β
go
type ToolResultProcessor struct {
llmProvider core.LLMProvider
}
func NewToolResultProcessor(llmProvider core.LLMProvider) *ToolResultProcessor {
return &ToolResultProcessor{
llmProvider: llmProvider,
}
}
func (trp *ToolResultProcessor) ProcessResult(ctx context.Context, toolName string, result interface{}, query string) (string, error) {
// Convert result to string representation
resultStr := fmt.Sprintf("%v", result)
if resultMap, ok := result.(map[string]interface{}); ok {
resultBytes, err := json.MarshalIndent(resultMap, "", " ")
if err == nil {
resultStr = string(resultBytes)
}
}
// Create prompt for result processing
prompt := fmt.Sprintf(`You are processing the result of a tool execution. Format the result in a clear, human-readable way that answers the user's query.
User query: %s
Tool used: %s
Tool result:
%s
Provide a concise, helpful response based on this result:`, query, toolName, resultStr)
// Get formatted response from LLM
return trp.llmProvider.Generate(ctx, prompt)
}
3. Tool Caching and Performance β
go
type CachedTool struct {
tool core.Tool
cache map[string]CacheEntry
cacheTTL time.Duration
mu sync.RWMutex
}
type CacheEntry struct {
Result interface{}
Timestamp time.Time
}
func NewCachedTool(tool core.Tool, cacheTTL time.Duration) *CachedTool {
return &CachedTool{
tool: tool,
cache: make(map[string]CacheEntry),
cacheTTL: cacheTTL,
}
}
func (ct *CachedTool) Name() string {
return ct.tool.Name()
}
func (ct *CachedTool) Description() string {
return ct.tool.Description()
}
func (ct *CachedTool) ParameterSchema() map[string]core.ParameterDefinition {
return ct.tool.ParameterSchema()
}
func (ct *CachedTool) Execute(ctx context.Context, params map[string]interface{}) (interface{}, error) {
// Create cache key from parameters
cacheKey := ct.createCacheKey(params)
// Check cache
if result, found := ct.getCachedResult(cacheKey); found {
return result, nil
}
// Execute tool
result, err := ct.tool.Execute(ctx, params)
if err != nil {
return nil, err
}
// Cache result
ct.setCachedResult(cacheKey, result)
return result, nil
}
func (ct *CachedTool) createCacheKey(params map[string]interface{}) string {
// Create deterministic key from parameters
keys := make([]string, 0, len(params))
for k := range params {
keys = append(keys, k)
}
sort.Strings(keys)
var keyBuilder strings.Builder
for _, k := range keys {
keyBuilder.WriteString(fmt.Sprintf("%s:%v;", k, params[k]))
}
// Hash the key for consistent length
hasher := sha256.New()
hasher.Write([]byte(keyBuilder.String()))
return fmt.Sprintf("%x", hasher.Sum(nil))
}
func (ct *CachedTool) getCachedResult(key string) (interface{}, bool) {
ct.mu.RLock()
defer ct.mu.RUnlock()
entry, exists := ct.cache[key]
if !exists {
return nil, false
}
// Check if entry is expired
if time.Since(entry.Timestamp) > ct.cacheTTL {
return nil, false
}
return entry.Result, true
}
func (ct *CachedTool) setCachedResult(key string, result interface{}) {
ct.mu.Lock()
defer ct.mu.Unlock()
ct.cache[key] = CacheEntry{
Result: result,
Timestamp: time.Now(),
}
// Clean up expired entries periodically
if len(ct.cache)%100 == 0 {
go ct.cleanupExpiredEntries()
}
}
func (ct *CachedTool) cleanupExpiredEntries() {
ct.mu.Lock()
defer ct.mu.Unlock()
now := time.Now()
for key, entry := range ct.cache {
if now.Sub(entry.Timestamp) > ct.cacheTTL {
delete(ct.cache, key)
}
}
}
Tool Configuration and Management β
1. Tool Configuration β
go
type ToolConfig struct {
Name string `json:"name"`
Enabled bool `json:"enabled"`
MaxCalls int `json:"max_calls"`
Timeout time.Duration `json:"timeout"`
RateLimit RateLimitConfig `json:"rate_limit"`
Cache CacheConfig `json:"cache"`
Parameters map[string]interface{} `json:"parameters"`
}
type RateLimitConfig struct {
MaxRequests int `json:"max_requests"`
Interval time.Duration `json:"interval"`
}
type CacheConfig struct {
Enabled bool `json:"enabled"`
TTL time.Duration `json:"ttl"`
}
type ToolManager struct {
tools map[string]core.Tool
configs map[string]ToolConfig
mu sync.RWMutex
}
func NewToolManager() *ToolManager {
return &ToolManager{
tools: make(map[string]core.Tool),
configs: make(map[string]ToolConfig),
}
}
func (tm *ToolManager) RegisterTool(tool core.Tool, config ToolConfig) error {
tm.mu.Lock()
defer tm.mu.Unlock()
name := tool.Name()
// Apply configuration wrappers
wrappedTool := tool
// Add caching if enabled
if config.Cache.Enabled {
wrappedTool = NewCachedTool(wrappedTool, config.Cache.TTL)
}
// Add rate limiting if configured
if config.RateLimit.MaxRequests > 0 {
wrappedTool = NewRateLimitedTool(wrappedTool, config.RateLimit.MaxRequests, config.RateLimit.Interval)
}
// Add validation
wrappedTool = NewValidatedTool(wrappedTool, true)
tm.tools[name] = wrappedTool
tm.configs[name] = config
return nil
}
func (tm *ToolManager) GetTool(name string) (core.Tool, error) {
tm.mu.RLock()
defer tm.mu.RUnlock()
tool, exists := tm.tools[name]
if !exists {
return nil, fmt.Errorf("tool not found: %s", name)
}
config := tm.configs[name]
if !config.Enabled {
return nil, fmt.Errorf("tool disabled: %s", name)
}
return tool, nil
}
func (tm *ToolManager) ListEnabledTools() []string {
tm.mu.RLock()
defer tm.mu.RUnlock()
var enabled []string
for name, config := range tm.configs {
if config.Enabled {
enabled = append(enabled, name)
}
}
return enabled
}
2. Tool Discovery and Registration β
go
type ToolDiscovery struct {
registry map[string]ToolFactory
mu sync.RWMutex
}
type ToolFactory func(config map[string]interface{}) (core.Tool, error)
func NewToolDiscovery() *ToolDiscovery {
td := &ToolDiscovery{
registry: make(map[string]ToolFactory),
}
// Register built-in tool factories
td.RegisterFactory("calculator", func(config map[string]interface{}) (core.Tool, error) {
return tools.NewCalculatorTool(), nil
})
td.RegisterFactory("weather", func(config map[string]interface{}) (core.Tool, error) {
apiKey, ok := config["api_key"].(string)
if !ok || apiKey == "" {
return nil, fmt.Errorf("weather tool requires api_key parameter")
}
return tools.NewWeatherTool(apiKey), nil
})
td.RegisterFactory("counter", func(config map[string]interface{}) (core.Tool, error) {
return tools.NewCounterTool(), nil
})
return td
}
func (td *ToolDiscovery) RegisterFactory(name string, factory ToolFactory) {
td.mu.Lock()
defer td.mu.Unlock()
td.registry[name] = factory
}
func (td *ToolDiscovery) CreateTool(name string, config map[string]interface{}) (core.Tool, error) {
td.mu.RLock()
factory, exists := td.registry[name]
td.mu.RUnlock()
if !exists {
return nil, fmt.Errorf("unknown tool type: %s", name)
}
return factory(config)
}
func (td *ToolDiscovery) ListAvailableTools() []string {
td.mu.RLock()
defer td.mu.RUnlock()
tools := make([]string, 0, len(td.registry))
for name := range td.registry {
tools = append(tools, name)
}
return tools
}
Production Integration Patterns β
1. Tool Health Monitoring β
go
type ToolHealthMonitor struct {
tools map[string]core.Tool
metrics map[string]*ToolMetrics
mu sync.RWMutex
}
type ToolMetrics struct {
TotalCalls int64 `json:"total_calls"`
SuccessCalls int64 `json:"success_calls"`
ErrorCalls int64 `json:"error_calls"`
AverageTime time.Duration `json:"average_time"`
LastError string `json:"last_error"`
LastErrorTime time.Time `json:"last_error_time"`
}
func NewToolHealthMonitor() *ToolHealthMonitor {
return &ToolHealthMonitor{
tools: make(map[string]core.Tool),
metrics: make(map[string]*ToolMetrics),
}
}
func (thm *ToolHealthMonitor) WrapTool(tool core.Tool) core.Tool {
thm.mu.Lock()
defer thm.mu.Unlock()
name := tool.Name()
thm.tools[name] = tool
thm.metrics[name] = &ToolMetrics{}
return &MonitoredTool{
tool: tool,
monitor: thm,
}
}
type MonitoredTool struct {
tool core.Tool
monitor *ToolHealthMonitor
}
func (mt *MonitoredTool) Name() string {
return mt.tool.Name()
}
func (mt *MonitoredTool) Description() string {
return mt.tool.Description()
}
func (mt *MonitoredTool) ParameterSchema() map[string]core.ParameterDefinition {
return mt.tool.ParameterSchema()
}
func (mt *MonitoredTool) Execute(ctx context.Context, params map[string]interface{}) (interface{}, error) {
start := time.Now()
name := mt.tool.Name()
// Execute tool
result, err := mt.tool.Execute(ctx, params)
// Record metrics
duration := time.Since(start)
mt.monitor.recordExecution(name, duration, err)
return result, err
}
func (thm *ToolHealthMonitor) recordExecution(toolName string, duration time.Duration, err error) {
thm.mu.Lock()
defer thm.mu.Unlock()
metrics := thm.metrics[toolName]
metrics.TotalCalls++
if err != nil {
metrics.ErrorCalls++
metrics.LastError = err.Error()
metrics.LastErrorTime = time.Now()
} else {
metrics.SuccessCalls++
}
// Update average time (simple moving average)
if metrics.TotalCalls == 1 {
metrics.AverageTime = duration
} else {
metrics.AverageTime = time.Duration(
(int64(metrics.AverageTime)*metrics.TotalCalls + int64(duration)) / (metrics.TotalCalls + 1),
)
}
}
func (thm *ToolHealthMonitor) GetMetrics(toolName string) (*ToolMetrics, error) {
thm.mu.RLock()
defer thm.mu.RUnlock()
metrics, exists := thm.metrics[toolName]
if !exists {
return nil, fmt.Errorf("tool not found: %s", toolName)
}
// Return a copy to avoid race conditions
return &ToolMetrics{
TotalCalls: metrics.TotalCalls,
SuccessCalls: metrics.SuccessCalls,
ErrorCalls: metrics.ErrorCalls,
AverageTime: metrics.AverageTime,
LastError: metrics.LastError,
LastErrorTime: metrics.LastErrorTime,
}, nil
}
func (thm *ToolHealthMonitor) GetHealthStatus() map[string]string {
thm.mu.RLock()
defer thm.mu.RUnlock()
status := make(map[string]string)
for name, metrics := range thm.metrics {
if metrics.TotalCalls == 0 {
status[name] = "unknown"
continue
}
errorRate := float64(metrics.ErrorCalls) / float64(metrics.TotalCalls)
switch {
case errorRate == 0:
status[name] = "healthy"
case errorRate < 0.1:
status[name] = "warning"
default:
status[name] = "unhealthy"
}
}
return status
}
2. Complete Integration Example β
go
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"os"
"time"
"github.com/kunalkushwaha/agenticgokit/core"
"github.com/kunalkushwaha/agenticgokit/tools"
)
func main() {
// Create tool discovery and manager
discovery := NewToolDiscovery()
manager := NewToolManager()
monitor := NewToolHealthMonitor()
// Configure tools
toolConfigs := []struct {
name string
config ToolConfig
params map[string]interface{}
}{
{
name: "calculator",
config: ToolConfig{
Name: "calculator",
Enabled: true,
MaxCalls: 100,
Timeout: 5 * time.Second,
Cache: CacheConfig{
Enabled: true,
TTL: 1 * time.Hour,
},
},
},
{
name: "weather",
config: ToolConfig{
Name: "weather",
Enabled: true,
MaxCalls: 50,
Timeout: 10 * time.Second,
RateLimit: RateLimitConfig{
MaxRequests: 10,
Interval: 1 * time.Minute,
},
Cache: CacheConfig{
Enabled: true,
TTL: 15 * time.Minute,
},
},
params: map[string]interface{}{
"api_key": os.Getenv("WEATHER_API_KEY"),
},
},
}
// Create and register tools
for _, tc := range toolConfigs {
tool, err := discovery.CreateTool(tc.name, tc.params)
if err != nil {
log.Fatalf("Failed to create tool %s: %v", tc.name, err)
}
// Wrap with monitoring
monitoredTool := monitor.WrapTool(tool)
// Register with manager
if err := manager.RegisterTool(monitoredTool, tc.config); err != nil {
log.Fatalf("Failed to register tool %s: %v", tc.name, err)
}
}
// Create MCP manager and register tools
mcpManager := core.NewMCPManager()
for _, toolName := range manager.ListEnabledTools() {
tool, err := manager.GetTool(toolName)
if err != nil {
log.Printf("Failed to get tool %s: %v", toolName, err)
continue
}
mcpManager.RegisterTool(toolName, tool)
}
// Create LLM provider
llmProvider, err := core.NewOpenAIProvider(
os.Getenv("OPENAI_API_KEY"),
"gpt-4",
core.WithTemperature(0.2),
core.WithMaxTokens(1000),
)
if err != nil {
log.Fatalf("Failed to create LLM provider: %v", err)
}
// Create agent
agent, err := core.NewAgent("assistant").
WithLLM(llmProvider).
WithMCP(mcpManager).
WithMCPConfig(core.MCPConfig{
Tools: manager.ListEnabledTools(),
MaxToolCalls: 5,
ToolTimeout: 10 * time.Second,
}).
Build()
if err != nil {
log.Fatalf("Failed to create agent: %v", err)
}
// Create runner with tool monitoring
runner := core.NewRunner(100)
runner.RegisterAgent("assistant", agent)
// Setup tool result handling
setupToolResultHandling(runner)
// Start runner
ctx := context.Background()
runner.Start(ctx)
defer runner.Stop()
// Example interaction
event := core.NewEvent(
"assistant",
core.EventData{"message": "Calculate 15 * 23 and tell me the weather in London"},
map[string]string{"session_id": "demo-session"},
)
runner.Emit(event)
// Wait and show metrics
time.Sleep(10 * time.Second)
// Display tool health metrics
fmt.Println("\nTool Health Status:")
healthStatus := monitor.GetHealthStatus()
for tool, status := range healthStatus {
fmt.Printf("- %s: %s\n", tool, status)
if metrics, err := monitor.GetMetrics(tool); err == nil {
fmt.Printf(" Calls: %d (Success: %d, Errors: %d)\n",
metrics.TotalCalls, metrics.SuccessCalls, metrics.ErrorCalls)
fmt.Printf(" Average Time: %v\n", metrics.AverageTime)
if metrics.LastError != "" {
fmt.Printf(" Last Error: %s (%v)\n", metrics.LastError, metrics.LastErrorTime)
}
}
}
}
Best Practices β
1. Tool Integration Guidelines β
- Selective Tool Access: Only provide agents with tools they actually need
- Tool Validation: Always validate tool parameters and results
- Error Handling: Implement robust error handling and recovery
- Performance Monitoring: Monitor tool performance and health
- Security: Implement proper authentication and authorization
- Caching: Use caching for expensive or frequently called tools
- Rate Limiting: Protect external services with rate limiting
2. Prompting Best Practices β
- Clear Tool Descriptions: Provide clear, concise tool descriptions
- Parameter Documentation: Document all parameters with examples
- Usage Examples: Include examples of when and how to use tools
- Error Guidance: Explain how to handle tool errors
- Tool Selection: Guide the agent on tool selection criteria
3. Production Considerations β
- Monitoring: Implement comprehensive tool monitoring
- Logging: Log all tool executions for debugging
- Metrics: Track tool usage and performance metrics
- Health Checks: Implement tool health checking
- Fallbacks: Provide fallback mechanisms for tool failures
- Configuration: Make tool configuration externally manageable
Troubleshooting β
Common Issues β
- Tool Not Found: Ensure tools are properly registered with the MCP manager
- Parameter Validation Errors: Check parameter schemas and validation rules
- Timeout Errors: Adjust tool timeout settings for slow operations
- Rate Limit Exceeded: Configure appropriate rate limits for external services
- Authentication Failures: Verify API keys and authentication credentials
Debugging Tips β
- Enable detailed logging for tool executions
- Use tool health monitoring to identify problematic tools
- Test tools independently before integrating with agents
- Monitor tool performance metrics regularly
- Implement proper error handling and recovery mechanisms
Conclusion β
Tool integration is a powerful feature that extends agent capabilities beyond text generation. By following the patterns and best practices in this tutorial, you can create robust, scalable tool integrations that enhance your agent systems.
Key takeaways:
- Use the MCP manager to register and manage tools
- Implement proper tool configuration and monitoring
- Handle tool results and errors gracefully
- Follow security and performance best practices
- Monitor tool health and performance in production
Next Steps β
- Advanced Tool Patterns - Explore complex tool usage patterns
- Tool Development - Learn how to create custom tools
- State Management - Understand state flow with tools